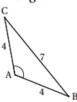
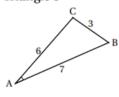

ACTIVITÉ

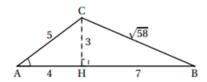
Partie A

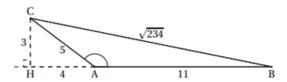
Triangle 1


Triangle 2


Triangle 3

Triangle 4

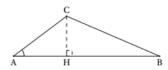

Triangle 5



- 1. Calculer le nombre $d = AB^2 + AC^2 BC^2$ pour chacun des cinq triangles.
- 2. Construire un triangle ABC tel que d > 0 et un autre tel que d < 0. Calculer dans chaque cas, une valeur de d.
- 3. Quelle information apporte le signe du nombre d sur l'angle géométrique \widehat{BAC} .

Partie B

Dans les deux configurations suivantes, H est le projeté orthogonal de C sur la droite (AB).



- 1. Étude de la configuration 1 :
 - (a) Calculer la valeur de $d = AB^2 + AC^2 BC^2$.
 - (b) Calculer la valeur $2AB \times AH$.
 - (c) Que remarquez-vous?

- 2. Étude de la configuration 2 :
 - (a) Calculer la valeur de $d = AB^2 + AC^2 BC^2$.
 - (b) Calculer la valeur $-2AB \times AH$.
 - (c) Que remarquez-vous?
- 3. Bilan : à l'aide des résultats des deux questions précédentes, compléter les conjectures suivantes :
 - Si l'angle \widehat{BAC} est aigu, alors $d = \dots$ et le signe de d est
 - Si l'angle \widehat{BAC} est obtus, alors $d=\dots$ et le signe de d est
 - Si l'angle \widehat{BAC} est droit, alors $d = \dots$

Partie C

Reprenons la configuration 1 de la Partie B.

- 1. On se place dans le triangle AHC rectangle en H. Justifier que $AH = AC \times \cos(\widehat{BAC})$.
- 2. On se rappelle que dans cette configuration : $d = 2AB \times AH$. Donner une nouvelle expression du nombre d.