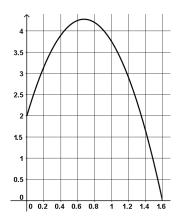
ACTIVITÉ 1 Correction

- 1. $0 \rightarrow 10 \rightarrow 20 \rightarrow 0$. En choisissant 0 on obtient 0.
 - $2 \rightarrow 12 \rightarrow 24 \rightarrow 4$. En choisissant 2 on obtient 4.
 - $5 \rightarrow 15 \rightarrow 30 \rightarrow 10$. En choisissant 5 on obtient 10.
- 2. Thierry a suivi le programme de calcul, qui donne le calcul suivant : $2 \times (x+10) 20 = 2x + 20 20 = 2x$. Il suffit donc à Thierry de diviser le résultat final annoncé par 2 pour obtenir le nombre de départ choisi.
- 3. La formule qui permet de calculer le résultat final annoncé est $f: x \mapsto 2x$.
- 4. Voici le tableau complété:


Nombre de départ choisi x	0	3, 5	12	-2	1,5
Résultat final annoncé $f(x)$	0	7	24	-4	3

ACTIVITÉ 2 Correction

- 1. $-5 \times 0^2 + 6{,}75 \times 0 + 2 = 0 + 0 + 2 = 2$. Le poids se trouve à 2 m au moment x=0 où Igor lance son poids.
- 2. $h(1,6) = -5 \times 1, 6^2 + 6, 75 \times 1, 6 + 2 = -12, 8 + 10, 8 + 2 = 0.$ Au bout de 1, 6 s, le poids sera retombé au sol (à un hauteur de 0 m).
- 3. Voici le tableau complété:

x	0	0, 4	0,8	1,2	1,6
h(x)	2	3, 9	4, 2	2,9	0

4. Pour déterminer approximativement la hauteur du poids 0,2 secondes puis 1,5 secondes après le lancer du poids, il serait intéressant de tracer un graphique représentant h:

On conclut donc que:

- Au bout de 2, 2 s, le poids se trouve à 3, 15 m du sol.
- Au bout de 1, 5 s, le poids se trouve à 0,875 m du sol.