CHAPITRE 5 : Généralités sur les suites

1 Suites numériques

1.1 Vocabulaire

Définition

Une suite numérique u est une fonction, définie pour tous les entiers naturels n à partir d'un entier naturel p qui, à tout entier naturel $n \ge p$, associe un nombre réel u(n) ou u_n : $u: n \mapsto u_n$.

Pour un entier $k \ge p$, on dit que u_k est le terme de rang (ou d'indice) k. u_p est appelé le terme initial de la suite.

Remarques

- Une suite numérique est une liste infinie de nombres réels "numérotés" à l'aide d'entiers naturels.
- Si n est un entier naturel quelconque, le terme initial de la suite est u_0 .
- Si n est un entier naturel non nul, le terme initial de la suite est u_1 .

Notations

- Une suite numérique se note le plus souvent (u_n) .
- Le terme qui suit le terme u_n est u_{n+1} . Le terme qui précède le terme u_n est u_{n-1} .

Exemple

On peut considérer comme une suite (u_n) la suite des nombres impaires, de terme initial $u_0 = 1$.

S'en suit : $u_1 = 3$; $u_2 = 5$; $u_3 = 7$; etc.

1.2 Mode de génération d'une suite

On étudiera deux façons de définir une suite : à l'aide d'une formule explicite ou à l'aide d'une formule de récurrence.

<u>Définition</u>

On considère une suite (u_n) avec $n \in \mathbb{N}$.

Définir une suite par une formule explicite c'est, pour tout entier naturel n, donner une relation de la forme $u_n = f(n)$ où f est une fonction définie sur $[0; +\infty[$.

Un terme u_n s'exprime directement en fonction de son rang n.

Remarque

Lorsqu'une suite est définie par une formule explicite, on peut calculer directement un terme quelconque u_n à partir de son rang n.

<u>Définition</u>

On considère une suite (u_n) avec $n \in \mathbb{N}$.

Définir une suite par une formule de récurrence, c'est donner la valeur du terme initial (u_0 par exemple) et un procédé qui permet de calculer un terme à partir de celui qui le précède.

Remarques

- Pour tout entier naturel n, on a : $\begin{cases} u_0 \text{ donn\'e} \\ u_{n+1} = f(u_n) \end{cases}$ où f est une fonction
- Lorsqu'une suite est définie par une formule de récurrence à partir du terme initial, chaque terme u_n permet de calculer le terme suivant u_{n+1} . Pour calculer un terme, on a besoin de calculer un par un tous ceux qui précédent.

Exemple

La suite (u_n) des nombres impaires, pour tout $n \in \mathbb{N}$, peut être définie par la formule explicite $u_n = 1 + 2n$ ou par une formule récurrence $\begin{cases} u_0 = 1 \\ u_{n+1} = u_n + 2 \end{cases}$

2 Sens de variation d'une suite

2.1 Représentation graphique d'une suite

Définition

Dans un repère, la représentation graphique d'une suite (u_n) est le nuage de points de coordonnées $(n; u_n)$ où $n \in \mathbb{N}$.

Remarque

Une suite (u_n) , définie par une formule explicite $u_n = f(n)$, est représentée par un nuage de points constitué des points d'abscisses entières sur la courbe de la fonction f.

Une suite définie par récurrence peut être représentée graphiquement à l'aide d'une méthode géométrique particulière.

2.2 Sens de variation

Définition

Soit (u_n) une suite numérique définie sur \mathbb{N} .

- La suite (u_n) est croissante lorsque, pour tout $n \in \mathbb{N}, u_{n+1} \geqslant u_n$.
- La suite (u_n) est décroissante lorsque, pour tout $n \in \mathbb{N}, u_{n+1} \leq u_n$.
- La suite (u_n) est croissante à partir d'un rang p lorsque, pour tout entier $n \ge p$, $u_{n+1} \ge u_n$.
- La suite (u_n) est décroissante à partir d'un rang p lorsque, pour tout entier $n \ge p$, $u_{n+1} \le u_n$.
- La suite (u_n) est constante à partir d'un rang p lorsque, pour tout entier $n \geqslant p$, $u_{n+1} = u_n$.

Remarques

- Certaines suites ne sont ni croissantes ni décroissantes.
 - Par exemple, la suite définie par $u_n = (-2)^n$: deux termes consécutifs sont de signes contraires.
- Croissance et décroissance d'une suite (u_n) sont définies à partir de l'ordre dans lequel sont rangés deux termes consécutifs u_n et u_{n+1} . Ainsi, pour étudier le sens de variation d'une suite, on peut étudier le signe de la différence entre deux termes consécutifs : $u_{n+1} u_n$.

Exemple

Reprenons la suite des nombres impaires (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = 1 + 2n$ et $u_0 = 1$. On a :

 $u_{n+1} - u_n = 1 + 2(n+1) - (1+2n) = 1 + 2n + 2 - 1 - 2n = 2 > 0.$

Donc $u_{n+1} > u_n$. Cette suite est croissante.

Propriété

Soit (u_n) une suite définie, pour tout entier $n \ge p$ par une formule explicite $u_n = f(n)$ où f est une fonction définie sur l'intervalle $[p; +\infty[$.

- Si la fonction f est croissante sur $|p; +\infty|$, alors la suite (u_n) est croissante à partir du rang p.
- Si la fonction f est décroissante sur $[p; +\infty[$, alors la suite (u_n) est décroissante à partir du rang p.

Démonstration

(lorsque f est croissante sur $[p; +\infty[$)

Pour tout entier $n \ge p$, on a $n+1 \ge n$. La fonction f étant croissante, on en déduit que $f(n+1) \ge f(n)$. On a alors $u_{n+1} \ge u_n$. La suite est croissante à partir du rang p.

Remarques

- Les réciproques de ces propriétés sont fausses.
- Cette propriété ne s'applique pas aux suites définies par récurrence.

3 Notion de limite d'une suite

L'objectif de ce paragraphe est d'observer le comportement des termes d'une suite lorsque n devient "très grand". On dit alors qu'on étudie la limite de la suite lorsque "n tend vers $+\infty$ ". On se contentera d'approches intuitives et expérimentales. Ainsi, pour observer le comportement d'une suite lorsque n "tend vers $+\infty$ ", on peut : utiliser le tableau de valeurs de la suite; afficher la représentation graphique de la suite; programmer un algorithme pour calculer de nombreux termes; utiliser un tableur; etc.

3.1 Suite convergente

Définition

Soit (u_n) une suite numérique. Lorsque, quand n augmente indéfiniment, les termes de la suite se rapprochent d'un nombre réel L, on dit que la suite (u_n) converge vers L.

On dit que la limite de u_n , lorsque n tend vers $+\infty$, est égale à L et on écrit $\lim_{n\to+\infty}u_n=L$.

Exemple

Un groupe de n personnes se partage une tarte en parts égales. On note u_n la masse d'une part lorsque la tarte est coupée en n parts.

De manière intuitive, on comprend que lorsque le nombre de personnes devient très grand, la masse de chaque part devient très faible et "tend vers 0". On dit que la suite (u_n) tend vers 0 lorsque n tend vers $+\infty$. On écrit : $\lim_{n\to +\infty} u_n = 0$.

3.2 Suite divergente

Définition

Une suite (u_n) est divergente lorsqu'elle n'est pas convergente.

Exemples

- Une mise en culture de bactéries volt leur nombre tripler toutes les heures. On note u_n le nombre de bactéries au bout de n heures. De manière intuitive, on comprend que, si le nombre d'heures n devient très grand, le nombre de bactéries augmente et devient arbitrairement grand. On dit que le nombre de bactéries tend vers $+\infty$ lorsque n tend vers $+\infty$. On écrit $\lim_{n\to+\infty} u_n = +\infty$. La suite (u_n) est divergente.
- On considère la suite (v_n) définie sur \mathbb{N} par : $v_n = (-1,1)^n$. On a une alternance du signe des termes. Ceux-ci ne se rapprochent pas d'un nombre réel, ne tendent pas vers $+\infty$ (ou $-\infty$) puisqu'un terme sur deux est négatif (ou positif). La suite (v_n) est donc divergente.