EXERCICE 1 9 points

Soit (E) l'équation différentielle : $y' - 3y = 2\cos(x) - \sin(x)$.

- 1. Déterminer les réels a et b tels que la fonction g définie sur \mathbb{R} par $g(x) = a\cos(x) + b\sin(x)$ soit une solution de (E).
- 2. Démontrer qu'une fonction f est solution de (E) si, et seulement si, la fonction f g est une solution de l'équation différentielle (E_0) : y' 3y = 0.
- 3. Déterminer l'ensemble des solutions de (E_0) .
- 4. En déduire l'ensemble des solutions de (E).
- 5. Déterminer la solution f de (E) telle que f(0) = 0.

EXERCICE 2 11 points

Soit la fonction f définie sur \mathbb{R} par $f(x) = \ln(1 + e^{-x}) + \frac{1}{4}x$. On admet que la fonction f est dérivable sur \mathbb{R} et on notera f' sa fonction dérivée.

- 1. Déterminer la limite de f en $+\infty$.
- 2. Montrer que, pour tout réel x, $f'(x) = \frac{e^x 3}{4(e^x + 1)}$.
- 3. En déduire les variations de la fonction f sur $\mathbb R$
- 4. Montrer que l'équation f(x) = 1 admet une unique solution α dans l'intervalle [2; 5].

On admettra que la fonction f' est dérivable sur \mathbb{R} et pour tout réel x, $f''(x) = \frac{e^x}{(e^x + 1)^2}$.

- 5. Justifier le signe de f''(x) pour $x \in \mathbb{R}$.
- 6. En déduire l'étude de la convexité de f sur \mathbb{R} .
- 7. Résoudre sur] $-\ln(2)$; $+\infty$ [l'équation sur $f(x) = \frac{1}{4}x + \ln(2 e^{-x})$.

Devoir Surveillé n°6

EXERCICE 1 9 points

Soit (E) l'équation différentielle : $y' - 3y = 2\cos(x) - \sin(x)$.

- 1. Déterminer les réels a et b tels que la fonction g définie sur \mathbb{R} par $g(x) = a\cos(x) + b\sin(x)$ soit une solution de (E).
- 2. Démontrer qu'une fonction f est solution de (E) si, et seulement si, la fonction f g est une solution de l'équation différentielle (E_0) : y' 3y = 0.
- 3. Déterminer l'ensemble des solutions de (E_0) .
- 4. En déduire l'ensemble des solutions de (E).
- 5. Déterminer la solution f de (E) telle que f(0) = 0.

EXERCICE 2 11 points

Soit la fonction f définie sur \mathbb{R} par $f(x) = \ln(1 + e^{-x}) + \frac{1}{4}x$. On admet que la fonction f est dérivable sur \mathbb{R} et on notera f' sa fonction dérivée.

- 1. Déterminer la limite de f en $+\infty$.
- 2. Montrer que, pour tout réel x, $f'(x) = \frac{e^x 3}{4(e^x + 1)}$.
- 3. En déduire les variations de la fonction f sur \mathbb{R} .
- 4. Montrer que l'équation f(x) = 1 admet une unique solution α dans l'intervalle [2; 5].

On admettra que la fonction f' est dérivable sur \mathbb{R} et pour tout réel x, $f''(x) = \frac{e^x}{(e^x + 1)^2}$.

- 5. Justifier le signe de f''(x) pour $x \in \mathbb{R}$.
- 6. En déduire l'étude de la convexité de f sur \mathbb{R} .
- 7. Résoudre sur] $-\ln(2)$; $+\infty$ [l'équation sur $f(x) = \frac{1}{4}x + \ln(2 e^{-x})$.