EXERCICE 1 12 points

On considère la fonction f définie sur $]-\infty;-3[\cup]-3;+\infty[=\mathbb{R}\setminus\{-3\}]$ par $f(x)=\frac{2x+2}{x+3}$.

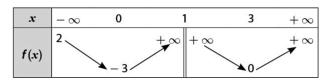
- 1. (a) On admet que $f'(x) = \frac{4}{(x+3)^2}$. Résoudre l'équation f'(x) = 0 sur $\mathbb{R} \setminus \{-3\}$.
 - (b) En déduire le tableau de variations de f sur $x \in \mathbb{R} \setminus \{-3\}$.
 - (c) En déduire que pour tout $x \in [0; 1], f(x) \in [0; 1].$
 - (d) Résoudre dans l'intervalle [0;1] l'équation f(x) = x.

Dans la suite du problème, on considère la suite (u_n) définie par : $u_0 = 0$ et $u_{n+1} = f(u_n)$, $n \in \mathbb{N}$.

- 2. (a) Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $0 \leq u_n \leq 1$.
 - (b) Montrer que la suite (u_n) est croissante.
 - (c) Que peut-on alors en déduire concernant la convergence de cette suite?
 - (d) Déterminer la limite l de la suite (u_n) .

EXERCICE 2 3 points

Voici ci-dessous le tableau de variations d'une fonction f définie sur l'intervalle $]-\infty;1[\cup]1;+\infty[$. \mathcal{C} est la courbe représentative de f dans un repère orthonormé.



Cocher, ci-dessous, sur l'énoncé, LA réponse exacte. Aucune justification n'est demandée. Aucun point n'est enlevé en l'absence de réponse ou en cas de réponse fausse.

Questions	Réponses
1. La droite d'équation :	$\square \ x = 2$ est asymptote à \mathcal{C}
	$\square x = 1$ est asymptote à \mathcal{C}
	$\square \ y = -3 \text{ est asymptote à } \mathcal{C}$
2. On a :	
	$\square \lim_{x \to 3} \frac{1}{f(x)} = 0$
3. $\lim_{x \to -\infty} e^{f(x)}$ est égale à :	□ 0
2 / 00	\square $-\infty$
	$\Box e^2$

EXERCICE 3 5 points

On considère la fonction g définie sur l'intervalle $]-\infty;-1[\cup]-1;+\infty[$ par $g(x)=\frac{x^2+2}{x+1}$.

- 1. Étudier la limite de la fonction g en $-\infty$; $+\infty$ et en -1.
- 2. Interpréter graphiquement les résultats obtenus.
- 3. Calculer g(1) et g(-2).
- 4. En vous aidant des questions précédentes, construire une esquisse de la courbe de la fonction g. Tracer également la ou les différentes asymptotes.