Interrogation n°2 Correction (Sujet A)

- 1. Déterminer la limite en $+\infty$ de la suite (u_n) définie par $u_n = n^2 + 2n 3$, pour tout $n \in \mathbb{N}$.
- 2. Déterminer la limite en $+\infty$ de la suite (u_n) définie par $u_n = \frac{n-1}{n+3}$, pour tout $n \in \mathbb{N}$.
- 3. Soit (u_n) une suite définie pour tout $n \in \mathbb{N}^*$. On donne : $\frac{1}{2\sqrt{n+1}} \le u_n \le \frac{1}{2\sqrt{n}}$. Déterminer la limite en $+\infty$ de (u_n) .
- 4. Soit (u_n) une suite définie pour tout $n \in \mathbb{N}$. On donne : $u_n \geq n^3 + 11$. Déterminer la limite en $+\infty$ de (u_n) .
- 1. $\lim_{n \to +\infty} n^2 = +\infty$ et $\lim_{n \to +\infty} 2n = +\infty$ donc $\lim_{n \to +\infty} u_n = +\infty$.
- 2. $u_n = \frac{n-1}{n+3} = \frac{1-\frac{1}{n}}{1+\frac{3}{n}}$. Comme $\lim_{n \to +\infty} \frac{1}{n} = 0$ et $\lim_{n \to +\infty} \frac{3}{n} = 0$ alors $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{1-\frac{1}{n}}{1+\frac{3}{n}} = \frac{1-0}{1+0} = 1$.
- 3. On sait que $\frac{1}{2\sqrt{n+1}} \le u_n \le \frac{1}{2\sqrt{n}}$. De plus $\lim_{n \to +\infty} \frac{1}{2\sqrt{n+1}} = 0$ et $\lim_{n \to +\infty} \frac{1}{2\sqrt{n}} = 0$. D'après le théorème des gendarmes : $\lim_{n \to +\infty} u_n = 0$.
- 4. On sait que $u_n \ge n^3 + 11$. De plus $\lim_{n \to +\infty} n^3 + 11 = +\infty$. D'après le théorème de comparaison : $\lim_{n \to +\infty} u_n = +\infty$.

Interrogation n°2 Correction (Sujet B)

- 1. Déterminer la limite en $+\infty$ de la suite (u_n) définie par $u_n = -n^2 2n 3$, pour tout $n \in \mathbb{N}$.
- 2. Déterminer la limite en $+\infty$ de la suite (u_n) définie par $u_n = \frac{2n+3}{n}$, pour tout $n \in \mathbb{N}^*$.
- 3. Soit (u_n) une suite définie pour tout $n \in \mathbb{N}^*$. On donne : $-\frac{1}{n} + 3 \le u_n \le \frac{1}{n} + 3$. Déterminer la limite en $+\infty$ de (u_n) .
- 4. Soit (u_n) une suite définie pour tout $n \in \mathbb{N}$. On donne : $-n+7 \ge u_n$. Déterminer la limite en $+\infty$ de (u_n) .
- 1. $\lim_{n \to +\infty} -n^2 = -\infty$ et $\lim_{n \to +\infty} -2n = -\infty$ donc $\lim_{n \to +\infty} u_n = -\infty$.
- 2. $u_n = \frac{2n+3}{n} = 2 + \frac{3}{n}$. Comme $\lim_{n \to +\infty} \frac{3}{n} = 0$ alors $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} 2 + \frac{3}{n} = 2 + 0 = 2$.
- 3. On sait que $-\frac{1}{n}+3 \le u_n \le \frac{1}{n}+3$. De plus $\lim_{n\to+\infty}-\frac{1}{n}+3=0+3=3$ et $\lim_{n\to+\infty}\frac{1}{n}+3=0+3=3$. D'après le théorème des gendarmes : $\lim_{n\to+\infty}u_n=3$.
- 4. On sait que $-n+7 \ge u_n$. De plus $\lim_{n \to +\infty} -n+7 = -\infty$. D'après le théorème de comparaison : $\lim_{n \to +\infty} u_n = -\infty$.

Barème (10 pts)

- 1. Limite normale: 0.5 pt justification +0.5 pt résultat = 1 pt.
- 2. Limite "indéterminée": 0,25 pt lever l'indétermination + 0,25 pt justification + 0,5 pt résultat = 1 pt.
- 3. Gendarmes: 1 pt encadrement + 1 pt justification + 1 pt Théorème + 1 pt résultat = 4 pts.
- 4. Comparaison: 1 pt encadrement + 1 pt justification + 1 pt Théorème + 1 pt résultat = 4 pts.